0957-4166(95)00252-9 # THIAZABOROLIDINES AND BH3 ADDUCTS DERIVED FROM THIOEPHEDRINES Alejandro Cruz¹, Angelina Flores-Parra¹, Hugo Tlahuext² and Rosalinda Contreras¹ * 1) Centro de Investigación y Estudios Avanzados del IPN. A.P. 14-740, México, D.F. 07000, México. 2) Facultad de Ciencias, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001 Col. Chamilpa, Cuernavaca Morelos, México **ABSTRACT:** The synthesis of 1,3,2-thiazaborolidine and 2,3-dihydro-2,1,3-borathiazolidines from reaction of ephedrine disulfide and 3,4-dimethyl-5-phenyl-1,3-thiazolidine-2-thione with BH₃-THF is reported. The two reactions afforded optically active borohydride heterocycles. The X-ray diffraction structure of (1R,2R)-(-)-chlorodeoxy-pseudo-ephedrine hydrochloride, (1R,2R)-(-)-thiosulfonic deoxy-pseudo-ephedrine and (3S,4R,5R)-(+)-2,3-dihydro-3,4-dimethyl-5-phenyl-2,1,3-borathiazolidine are reported. We have been involved in the syntheses and structural analyses of chiral borohydride compounds¹⁻³. Recently, we reported the synthesis of N-alkyloxazaborolidines 1-3 derived from ephedrines⁴⁻⁵ (Figure 1). Now, we are interested in studying the analogous compounds made from thioephedrines and herein, we report several borohydride compounds derived from thioephedrine (compounds 9-15) following the syntheses depicted in Scheme 1. $$C_6H_5$$ C_6H_5 C Figure 1 Compounds 5 and 6 were crystallized and the diffraction structures were obtained as described in Figures 2 and 3 respectively, data are in Table. Chlorination reaction occurs with epimerization at C1 as it was deduced from the NMR data and solid state structure. The substitution reaction of chloride by the sulfate group has been done with retention of the C1 configuration. The reaction of disulfide 7 with BH₃-THF produces the amine boranes 9 and 10 which were identified by ¹¹B NMR and compared with the N-BH₃ adducts of pseudo-ephedrine⁵. Compounds 9 and 10 are N-epimers of stable nitrogen Scheme 1 Thiazaborolidines 1935 configuration. Heating the N-epimers mixture affords exclusively the borinic ester 11 which appears as a triplet (δ = -6.4 ppm, J(BH)= 103 Hz, in CDCl₃ or δ = -4.5 ppm, in THF- d_8) in the ¹¹B NMR spectra. The ¹H and ¹³C NMR data of heterocycle 11 allow us to assign the configuration at the nitrogen atom. This N-epimer 11 has the two methyl groups in the *trans* position. It is important to mention that borinic esters with a BH₂ group derived from ethanolamines are not stable compounds as we have observed in our experiments. In fact, elimination of H₂ slowly transformed compound 11 into compound 12. Compound 12 presents a doublet (δ = +40.8 ppm, J(BH)= 154 Hz) in the ¹¹B NMR spectrum. From a distilled mixture (11, 10% and 12, 90%), which had been crystallized, a crystal of compound 11 was separated and its X-ray diffraction structure obtained (Figure 4). Compound 11 has an envelope conformation with the C-5 atom out of the plane. The N-B bond distance is 1.58(1) Å and B-S of 1.922(9) Å. Boron and nitrogen atoms are tetrahedral. The configuration at nitrogen atom is in agreement with an "S" configuration, as deduced from the ¹H and ¹³C NMR data. The methyl groups are in a *trans* rearrangement. The angles around the nitrogen atom are close to those of a sp³ hybridation, C4-N3-C13 112.3(5)°, B2-N3-C13 111.3(5)° and C4-N3-B2 112.0(5)°. Figure 2. X-Ray diffraction structure of compound 5. Figure 3. X-Ray diffraction structure of compound 6. 1936 A. CRUZ et al. The reaction of the thiazaborolidine 12 with BH₃-THF afforded a N-BH₃ adduct 13 (Scheme 1). The structure has been deduced from the ¹¹B NMR data, which indicated a N-BH₃ bond (quadruplet at δ = -22.0 ppm, J(BH)= 71 Hz) and a doublet which is strongly shifted to lower frequencies (δ = -7.0, J(BH)= 148 Hz). This indicates the formation of a diborane group, in which a hydrogen atom from the N-BH₃ adduct is bridging the boron atom of the heterocyclic. This is a behaviour similar to that found in the *pseudo*-ephedrine oxazaborolidine⁴. Table: Interatomic distances (Å) and bond angles (deg.) | Compound 5 | | | | | | |---------------------|-----------|---------------------|-----------|---------------------|----------| | Cl(2) - C(1) | 1.815(4) | C(1) - C(6) | 1.489(6) | C(1) - C(2) | 1.518(5) | | N(3) - C(4) | 1.478(5) | N(3) - C(2) | 1.498(5) | C(2) - C(5) | 1.503(5) | | C(2) - N(3) - C(4) | 114.9(4) | C(1) - C(2) - C(5) | 111.4(4) | C(2) - C(1) - C(6) | 114.2(4) | | CI(2) - C(1) - C(6) | 109.7(3) | Cl(2) - C(1) - C(2) | 108.8(3) | N(3) - C(2) - C(5) | 110.2(4) | | N(3) - C(2) - C(1) | 109.4(4) | | | | . , | | Compound 6 | | | | | | | S(1) - S(2) | 2.0868(9) | S(1) - C(1) | 1.843(3) | C(2) - C(5) | 1.520(4) | | S(2) - O(1) | 1.456(2) | N(3) - C(2) | 1.496(3) | C(1) - C(2) | 1.538(3) | | S(2) - O(2) | 1.445(2) | N(3) - C(4) | 1.480(3) | C(1) - C(6) | 1.500(4) | | S(2) - O(3) | 1.448(2) | , , , | . , | -(-) -(-) | (,) | | S(1) - S(2) - O(1) | 106.04(9) | O(2) - S(2) - O(3) | 115.2(1) | C(2) - C(1) - C(6) | 113.2(1) | | S(1) - S(2) - O(2) | 107.05(8) | S(2) - S(1) - C(1) | 99.69(8) | N(3) - C(2) - C(1) | 107.7(2) | | S(1) - S(2) - O(3) | 101.76(8) | C(2) - N(3) - C(4) | 116.1(2) | N(3) - C(2) - C(5) | 110.1(2) | | O(1) - S(2) - O(2) | 111.8(1) | S(1) - C(1) - C(2) | 109.6(2) | C(1) - C(2) - C(5) | 113.2(2) | | O(1) - S(2) - O(3) | 113.7(1) | S(1) - C(1) - C(6) | 110.1(2) | -(-) -(-) | 111.2(2) | | Compound 11 | | | | | | | S(1) - C(5) | 1.836(6) | C(4) - C(12) | 1.503(9) | C(4) - C(5) | 1.543(8) | | N(3) - C(4) | 1.472(7) | S(1) - B(2) | 1.922(9) | C(5) - C(6) | 1.481(8) | | N(3) - B(2) | 1.58(1) | N(3) - C(13) | 1.507(9) | 0(0) | 1.101(0) | | C(5) - S(1) - B(2) | 94.8(3) | S(1) - C(5) - C(6) | 112.7(4) | S (1) - C(5) - C(4) | 106.4(4) | | C(4) - N(3) - B(2) | 112.0(5) | C(4) - N(3) - C(13) | 112.3(5) | C(4) - C(5) - C(6) | 113.5(5) | | N(3) - C(4) - C(5) | 106.5(5) | C(13) - N(3) - B(2) | 111.3(5) | S(1) - B(2) - N(3) | 101.7(5) | | C(5) - C(4) - C(12) | 112.3(5) | N(3) - C(4) - C(12) | 113.9(5) | 2(1) 2(2) 11(3) | 101.7(0) | | | | (-) 5(1) | - 15.7(5) | | | Reaction of compound 5 with trithiocarbonate in ethanol afforded the thiazolidine-2-thione 8 which has been isolated and characterized and its reactivity towards BH₃-THF studied, Scheme 1. The reaction has been followed by ^{11}B NMR and the first product detected was the S-BH₃ adduct 14 (δ = -23 ppm, broad signal). The ^{1}H NMR spectrum of compound 14 indicates that BH₃ is not linked to the intracyclic sulfur atom because there is no effect on the ^{1}H chemical shift at the hydrogen near to this sulfur atom. Heating heterocycle 14 afforded the cyclic species S-BH₂-N 15 which presented a triplet at δ = -3.8 ppm (J(BH)= 111.5 Hz). This compound 15 was obtained pure when 8 was treated with 3 equivalents of BH₃-THF. The ¹H and ¹³C NMR were recorded and the data is shown in Figure 5. Two diasterotopic N-methyl groups show that the nitrogen has a stable configuration, the assignment of the ¹H and ¹³C signals were done based on steric effects and by comparison with similar compounds^{1,5}. Figure 4. X-Ray diffraction structure of compound 11. ## CONCLUSIONS The investigation of the reaction of two ephedrines derivatives, 7 and 8, and BH₃-THF allow us to identify and characterize three optically active borohydride heterocycles, 11, 12 and 15. The dihydroborathiazolidines 11 and 15 allowed us to study five membered rings with an intracyclic BH₂ group these heterocycles contrast with the analogues dihydroboraoxazolidines which we could not isolate, being observed only as fleeting species^{4,5}. All of these borohydrides could be candidates as chiral catalyst reagents. ## **EXPERIMENTAL** NMR spectra were recorded by using the frequency of 270 for ¹H and 67.8 MHz for ¹³C with TMS as an internal reference and 86.55 MHz for ¹¹B with BF₃-OEt₂ as external reference. Mass spectra were recorded on a Hewlett Packard 5989 mass spectrometer. Melting points are uncorrected. Computation for compound 6 was performed by using MOLEN⁹ adapted for a Micro Vax II, while computation for compounds 5 and 11 were performed by using CRYSTALS¹⁰ adapted for an Acer View 56 L. 1938 A. CRUZ et al. Figure 5. Chemical shifts data of ¹H and ¹³C NMR of compounds 8, 11-15. Compounds 5⁶, 6⁷ and 7⁸ were prepared as described in the literature. Their data follows. (1R.2R)-(-)-Chlorodesoxy-pseudo-ephedrine hydrochloride, 5. M.p. 198-200°C. ¹H NMR (DMSO-d₆) $\delta(ppm)$ 7.45(m, 5H, C₆H₅), 5.45(d, ³J = 9.4, 1H, Cl-CH), 3.96(m, 1H, N-CH), 2.60(s, 3H, N-CH₃), $1.05(d, {}^{3}J = 6.6, {}^{3}H, C-CH_{3})$. ${}^{13}C NMR (DMSO-d_{s}) \delta(ppm) 137.08(1C, Ct)$. 129.16(1C, Cp). 128.90(2C, 2Co), 127.85(2C, 2Cm), 62.23(1C, C1), 58.20(1C, C2), 29.10(1C, C4), 12.82(1C, C3). Mass $m/e 146\{[M^+-HC1]^+, 100\%\}$. $[\alpha]_D = -122.3$ (c = 0.04, H₂O). Crystal data: Formula, $C_{10}H_{15}NCl_2$; fw, 220.14; space group, $P2_1$; a (Å) = 7.357(1); b (Å) = 7.077(8); c (Å) = 11.413(2); $\alpha = 90$; $\beta = 11.413(2)$; $\alpha = 90$; $\alpha = 90$; $\beta = 11.413(2)$ 11.413$ 90.45(1); $\gamma = 90$; V (Å³) = 594.2(1); Z, 2; F(000), 232; crystal dimensions(mm), 0.40x0.40x0.30; linear abs coeff cm⁻¹, 5.06; ρ (calc) g cm⁻³, 1.23; scan type, $\omega/2\theta$; scan range (°), 0.63 + 0.49 tg θ ; θ limits (°),1 - 25; octants collected, -8,8; 0,8; 0,13; data collected, 1197; unique data collected, 1135; unique $989(F_0)^2 > 3\sigma (F_0)^2$; R(int), 0.44; decay <1: DIFABS(0.77min,1.18max); $R=\Sigma ||F_0| - |F_0||/\Sigma ||F_0|| = 0.035$; $R_w = [\Sigma w(|F_0||F_0|)^2/\Sigma w F_0^2]^{1/2} = 0.033$ w = 1.0; Goodness of fits, 2.60; no. of variables, 73; $\Delta \rho \min (e/Å^3)$, -0.27; $\Delta \rho \max (e/Å^3)$, 0.19. (1R,2R)-(-)-Thiosulfonic deoxy-pseudo-ephedrine acid, 6. M.p. 165-166°C. ¹H NMR (DMSO-d₆) δ(ppm) 7.35(m, 5H, C₆H₅), 4.48(d, ³J = 6.0 Hz, 1H, S-C<u>H</u>), 3.85(m, 1H, N-C<u>H</u>), 2.66(s, 3H, N-C<u>H₃</u>), 1.05(d, ³J = 6.6 Hz). ¹³C NMR (DMSO-d₆) δ(ppm) 138.2(1C, Ci), 128.6(2C, Co), 128.05(2C, Cm), 127.6(1C, Cp), 58.48(1C, C2), 54.1(1C, C1), 30.45(1C, C4), 13.2(1C, C3). [α]_D = -146.3 (c = 0.041, H₂O). Crystal data: Formula, C₁₀H₁₅NO₃S₂; fw, 231.36; space group, P-1; a (Å) = 7.837(1); b (Å) = 8.601(1); c (Å) = 19.104(1); α = 93.21(5); β = 93.09(5); γ = 92.53(6); V(Å³) = 1282.3; Z, 4; F(000), 552; crystal dimensions(mm), 0.30x0.20x0.40; linear abs coeff cm⁻¹, 3.9; ρ (calc) g cm⁻³, 1.35; scan type, ω /2θ; scan range (°), 0.5 + 0.83 tan θ; θ limits (°),1 - 20; octants collected, 0,7;-7,7;-17,17; data collected, 4331; unique data collected, 4331; unique data collected, 3863(F_o)²>3σ(F_o)²; R(int), 0.040; decay %, <1; $R=\Sigma||F_0| - |F_0||/\Sigma|F_0|$, 0.040; $R_w=[\Sigma w(|F_0||F_0|)^2/\Sigma w{F_0}^2]^{1/2}$, 0.040 w=1.0; no. of variables, 409; $\Delta\rho\min\left(e/\mathring{\mathbb{A}}^3\right)$, -0.1; $\Delta\rho\max\left(e/\mathring{\mathbb{A}}^3\right)$, 0.08. (1R,2R)-(-)-Deoxy-pseudo-ephedrine disulfide, 7. ¹H NMR (CDCl₃) δ (ppm) 7.23(m, 5H, C₆H₅), 3.59(d, ³J = 8.57, 1H, S-CH), 3.06(m, 1H, N-CH), 2.40(s, 3H, N-CH₃), 0.94(d, ³J = 6.6 Hz, 3H, C-CH₃). ¹³C NMR (CDCl₃) δ (ppm) 139.08(1C, C*i*), 128.89(2C, C*o*), 128.38(2C, C*m*), 127.58(1C, C*p*), 60.81(1C, C1), 57.84(1C, C2), 33.02(1C, C4), 16.8(1C, C3). [α]_D = -132.9 (c = 0.034, CHCl₃). (4R,5S)-(+)-3,4-Dimethyl-5-phenylthiazolidine-2-thione, 8. Preparation of compound 8 by an different method has been reported. (1R, 2R)-(-)-Chlorodeoxy-pseudo-ephedrine hydrochloride 5 (0.5 g, 2.27 mmol) was dissolved in 10 mL of ethanol. A 33% solution of trithiocarbonate (1.3 mL, 2.78 mmol) was refluxed for 3 h and the ethanol was evaporated. The thiazolidine-2-thione 8 was extracted with chloroform, dried with anhydrous sodium sulfate, filtered and crystallized in CHCl₃. M.p. 78°C. Mass m/e 223 {[M⁺], 100%}, [α]_D = +28.43 (c = 0.089, H₂O). (3S, 4R, 5R)-2,3-Dihydro-3,4-dimethyl-5-phenyl-2,1,3-borathiazolidine,11 and (4R, 5R)-(+)-3,4-dimethyl-5-phenyl-1, 3, 2-thiazaborolidine, 12. A borane-THF solution (3,3 mL, 1,95 M, 6,4 mmol) was added dropwise to deoxy-pseudo-ephedrine disulfide 7 (1.15 g, 3.2 mmol) in THF (5 mL). The mixture was refluxed 3 h and the THF was evaporated and the residue was analysed by 11B, 13C and 1H NMR. It was a mixture of dihydroborathiazolidine 11 (75.4%) and borathiazolidine 12 (15%); the data is shown in Figure 5. Compound 11 is not stable. By standing, it was slowly transformed into compound 12. The mixture was distilled at 100°C and 1 mm Hg. A crystal was separated from the crystalline distillate (0.45 g. 95%; 90% of 12 and 10% of 11) and the X-ray diffraction study of compound 11 was obtained. Compound 12 M.p. 163°C with decomposition. Mass $m \in 191\{[M^+], 57\%\}$, 176 $\{[M^+-CH_3]^+, 100\%\}$. $[\alpha]_D = +67.3$ (c = 0.055, THF). Crystal data: Formula, $C_{10}H_{16}BNS$; fw, 193.11; space group, $P2_1$; a (Å) = 6.3021(3); b (Å) = 7.5550(2); c (Å) = 11.8448(9); α = 90.00; β = 98.65(1); γ = 90.00; V (Å³) = 556.7(3); Z, 2; F (000), 208; crystal dimensions(mm), $0.30 \times 0.40 \times 0.40$; linear abs coeff cm⁻¹, 2.34; ρ (calc) g cm⁻³, 1.15; scan type, $\omega/2\theta$; scan range (°), 0.52 + 1.09tg θ ; θ limits (°), 2.13 - 25; octants collected, 0.7; 0.8; -14,13; data collected, 1151; unique data collected, 1056; unique data used, 712 $(F_0)^2 > 2\sigma (F_0)^2$; R(int), 3.79; decay %, <1; absortion correction, DIFABS (0.69min, 1.4max); $R=\Sigma||F_0|-|F_0||/\Sigma|F_0|$, 0.039; $R_w = [\sum w(|F_0||F_c|)^2/\sum wF_0^2]^{1/2}$, 0.040 w= 1.0; Goodness of fit s, 2.72; no. of variables, 130; $\triangle pmin$ $(e/Å^3)$, -0.23; $\Delta \rho max (e/Å^3)$, 0.35. (3S,4R,5R)-3-Borane-3,4-dimethyl-5-phenyl-1,3,2-thiazaborolidine,13. To dimethyl-5-phenylthiazaborolidine 12 (0.073 g, 0.38 mmol) in THF (5 mL) was added BH₃-THF in solution 1.95 M (0.2 mL, 0.38 mmol) and the reaction was kept at 45° for 12 hours. The reaction was followed by ¹¹B NMR. Data of ¹¹B, ¹³C and ¹H NMR have been discussed in the text. (4R,5S)-3,4-Dimethyl-5-phenylthiazolidine-2-thione S-BH₃ adduct 14 and (4R,5S)-2-hydro-3,3,4-trimethyl-5-phenyl-2,1,3-borathiazolidine 15. A solution of 1.95 M of BH₃-THF (0.15 mL, 3.31 mmol) was added dropwise to a solution of compound 8 (0.07 g, 0.66 mmol) in 0.5 mL of THF and the reaction followed by ¹¹B NMR. The reaction product 14 was not isolated but it was characterized by ¹¹B and ¹H NMR, see figure 5. To the reaction mixture, 2 equivalents of the borane solution were added 1940 A. CRUZ *et al.* (0.68 mL, 1.32 mmol) and the solution was heated for 3 h. After, the solvent was evaporated compound 15 was obtained as a viscous liquid, which was characterized by NMR, data are in figure 5. #### ACKNOWLEDGEMENTS We thank CoNaCyT-Mexico for financial support. A.C. thanks the Instituto Politécnico Nacional (Mexico) for support. We thank Prof. María de Jesús Rosales-Hoz and chemist Efrén García-Baez for the X-ray diffraction structures of compounds 5 and 6. ### REFERENCES - 1. a) Contreras, R.; Santiesteban, F.; Paz-Sandoval, M.A.; Wrackmeyer, B. Tetrahedron 1984, 40, 3829. - b) Paz-Sandoval, M.A.; Santiesteban, F.; Contreras, R. Mag. Reson. Chem. 1985, 23, 428. - 2. Santiesteban, F.; Campos, M.A.; Morales, H.; Contreras, R.; Wrackmeyer, B. Polyhedron 1984, 3, 589. - 3. Tlahuext, H.; Contreras, R. Tetrahedron Asymm. 1992, 3, 727. - 4. Tlahuext, H.; Contreras, R. Tetrahedron Asymm. 1992, 3, 1145. - 5. Tlahuext, H.; Santiesteban, F.; Baez, E.G.; Contreras, R. Tetrahedron Asymm. 1994, 5, 1579. - 6. Kniezq, L.; Kristian, P.; Budesinsky M.; Havrilova, K. Collection. Czechoslovak, Chem. Comm. 1981, 46, 717. - 7. Bhat, K.V.; Mc Carthy, W.C. J. Pharm. Sci. 1965, 54, 225. - 8. Kone B.; Gelbcke, N. Bull. Soc. Chim. Belg. 1983, 92, 139. - 9. MOLEN, An Iteractive Structure Solution Procedure. ENRAF-NONIUS, Delft Instruments X-ray Diffraction, B.V. Delft, Netherlands (1990). - 10. Watkin, D.J.; Carruthers, J.R.; Betteridge, P.W. CRYSTAL, An Advanced Crystallographic Program System; Chemical Crystallography Laboratory, University of Oxford, England (1988). (Received in USA 15 May 1995)